Rational approximation solution of the fractional Sharma–Tasso–Olever equation
نویسندگان
چکیده
منابع مشابه
Pseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملOn the Solution of Fractional Kinetic Equation
In this paper, the solution of a class of fractional Kinetic equation involving generalized I-function has been discussed. Special cases involving the Ifunction, H-function, generalized M-series, generalized Mittag-Leffler functions are also discussed. Results obtained are related to recent investigations of possible astrophysical solutions of the solar neutrino problem.
متن کاملRational approximation to the Thomas–Fermi equation
We discuss a recently proposed analytic solution to the Thomas– Fermi (TF) equation and show that earlier approaches provide more accurate results. In particular, we show that a simple and straightforward rational approximation to the TF equation yields the slope at origin with unprecedented accuracy, as well as remarkable values of the TF function and its first derivative for other coordinate ...
متن کاملa fractional type of the chebyshev polynomials for approximation of solution of linear fractional differential equations
in this paper we introduce a type of fractional-order polynomials basedon the classical chebyshev polynomials of the second kind (fcss). also we construct the operationalmatrix of fractional derivative of order $ gamma $ in the caputo for fcss and show that this matrix with the tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2009
ISSN: 0377-0427
DOI: 10.1016/j.cam.2008.04.033